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ON DIFFUSION FLAMES IN TURBULENT SHEAR FLOWS:
MODELING REACTANT CONSUMPTION IN A PLANAR FUEL JET

W. B. Bush™"
University of California, San Diego
La Jolla, California

and

P. S. Feldman' and F. E, Fendell?
\JRW Systems and Energy Group
Redondo Beach, California

Abstract

The turbulent portion of the planar fuel jet, for
isobaric subsonic flow, under fast direct one-step
irreversible reaction between unpremixed fuel and
oxidant, is analyzed. Mean spatial profiles for
the dependent variables are found numerically and
analytically from the governing nonlinear partial
differential equations, based on an explicit eddy
diffusion, and on a mean rate of reactant con-
sumption proportional to the product of the mean
mass fraction of fuel, the mean mass fraction of
oxidant, and the appropriate local characteriza-
tion of the mean rate of strain. Results from the
model are qualitatively, and, in many cases,
quantitatively, compatible with experimental data.

I. Introduction

In many aerothermochemical devices, the
rapid burning of initially unmixed, but highly com-
bustible, gases is preferred for control and
safety. The essential point is that the rate of
consumption of reactants, and the generation of
products and of chemical exothermicity are usual-
ly controlled by unsteady, inviscid, inertial,
large-scale mixing. Once the large-scale struc-
ture is broken down (to permit molecularly con-
trolled small-scale mixing and chemical mecha-
nisms to proceed), the formation of product gas
occurs rapidly. In fact, to keep such devices to
practical dimensions, the intuitively faster mixing
associated with unsteady, turbulent diffusion, as
opposed to laminar diffusion, is preferred. (Hence,
if the flow is not naturally unsteady, transition is
often artificially induced.) Thus, the combustion
of unpremixed gases in turbulent shear flows, or
(more succinctly) turbulent diffusion flames, re-
mains one of the subjects in aerothermochemistry
and most worthy of intense study.

Of course, not all turbulent reacting flows fall
into the category of turbulent diffusion flames, and,
in these other cases, more general approaches
(retaining the roles of finite-rate chemical kinetics
and of molecular-scale mixing, as well as that of
large-scale turbulent diffusion) are necessary.

It is intriguing for modelers to attempt these more
complicated cases, but, from a practical point-of-
view, turbulent diffusion flames remain one of the
most recurrent phenomena in combustion. 1f so
practically important and relatively simple a prob-
lem cannot be feasibly treated, then, the outlook
for the treatment of these more difficult cases
dims.

The present work is also motivated by what the
authors believe to be a realistic appraisal of
(1) design needs; (2) available experimental data
to serve as boundary/initial conditions to initiate
a prediction, and as comparisons to validate such
a prediction; and (3) current physical understand-
ing of turbulent transfer. A relatively rapid and
inexpensive means of explicitly characterizing the
alteration in system performance as a function of
alteration in controllable parameters is often what
is primarily sought by the designer. Properties
of the turbulence are often not of as much practical
interest as behaviors of the dependent variables,
themselves. In fact, properties of the turbulence
are usually not known, and must be arbitrarily
adopted at initial and/or boundary stations in com-
putations involving higher-order closures. Where
sensitivity to such assumptions dissipates, the
flow may well be close enough to local turbulent
equilibrium that explicit lower-order closures are
adequate. Another problem with such higher-
order closures is that the conceptuaily systematic
developments become ultimately vitiated in
practice, because of the need to adopt relatively
arbitrary statements concerning the integral
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length scale of the turbulence and/or the functional
forms of the probability distribution functions for
the dependent variables. Unless consistency in
the level of approximation of a coupled nonlinear
system is maintained, professions of accuracy
become moot. Thus, intricate formulation neces-
sarily incurs additional expense, but does not
necessarily achieve additional validity. In an al-
most inevitably semi-empirical subject as turbu-
lent reacting shear flows, the simplest formu-
lation, adequate in terms of available data and
engineering design for a particular, yet commonly
occurring, case, i.e., turbulent diffusion flames,
appears worth identifying.

Of special interest here is the application of
modeling of unsteady diffusion flames to diffusion-
type continuous chemical lasers, in which highly
dissociated fluorine reacts with bimolecular
hydrogen (or deuterium) to form an activated
product. For this particular case, a direct one-
step irreversible chemical reaction is the actual
chemical mechanism, not a simulation (Kerber,
Emanuel and Whittier ). Chemical lasers operable
at higher cavity pressure levels are of interest;
such higher levels still leave three-body reactions
negligibly slow relative to the two-body mechaniam.
While higher pressure increases the degree of
unsteadiness in the flow field, the Reynolds num-
bers are small enough that conventional concepts
of fully-developed turbulence do not apply to the
pumping. Ia fact, consideration of the large-
scale structure recently emphasized in transitional
and unsteady shear flow is doubtlessly relevant
(Davies and Yule“; Roshko”). Modifications of the
large-scale structure at higher Reynolds numbers
do not appear pertinent.

For such large-scale structure, both a local
instantaneous theory for unsteady diffusion flames
(Bush and Fendell4; Carrier, Fendell and Marble5:
Carrier and Fendell”), and also a mean theory for
the time-averaged description (Bush and Fendell™;
Bush, Feldman and Fendell’) have appeared in the
literature. The model is particularly suitable for
those cases, such as hydrogen-fluorine cold-step
chemistry, in which the first Damkohler number is
large, so that, instantaneously, a thin flame arises,
(Large first Damkohler number implies that the
reaction rate is large relative to the flow rate, so
that the aerothermochemical system is in, or very
close to, chemical equilibrium.) In such cases, in
time-average, the mean rate of reactant con-
sumption is taken to be related to the product of
the mean mass fraction of oxidant, the mean mass
fraction of fuel, and the principal mean strain
rate (for the parabolic formulation appropriate for
the thin shear layers of interest here). It is argued
that, in general, the magnitude of the principal
mean strain rate indicates the level of local chemi-
cal activity in a turbulent diffusion flame in which
mac roscopic mixing is rate-controlling,

The explicit local algebraic (as opposed to field-
type differential) expression adopted for the mean

rate of chemical reaction 1s compatible with the
adoption of an explicit local algebraic (eddy vis-
cosity) expression for the mean rate of diffusive
transport., It is believed that: (1) it 1s inconsis~-

tent to adopt a second~order closure for the mean

kinetics or eddy transport, and an explicit (or
first-order) closure for the other; (2) it (s pre-
mature to examine second-order closure for
either the mean kinetics or the mean diffusive
transport until the local explicit algebraic re-
lations, into which such formulations degenerate
in local turbulent equilibrium, are first examined
for plausibility; and (3) the additional complexity
of second-order closures for nondefect=layer-ty
flow geometries (Spaldinglo' I, 0ooms and Wicks!
Spalding”) has not been justified by proof of
sufficient additional validity in prediction, and,
for defect-layer-type geometries, explicit clo-
sures are quite competitive with second-order

closures (Reynolds 4,

The present model has been studied in detail
for the mixing layer formed by two parallel
streams, a geometry of interest towards the end
of the lasing zone in a diffusion-type continuous
chemical laser cavity (Bush, Feldman and
Fendell?). However, whereas the fully -developed
mixing layer is tractable for analysts, it is diffi-
cult for experimentalists, and, thus, some em-
pirical constants in the theory remain unassigned
for lack of data. Experirnentalists have treated
the fuel jet exhausting into an oxidant-containing
ambient (e.g., Hawthorne, Weddell and Hottel ' ;
Kremer'®; Kent and Bilger”: Bilger and Beck!8),
and, under the assumption that values for empiri-
cal factors are transferrable between the geo-
metries, a solution is sought here for the two-
dimensional fuel jet. The major new feature
introduced by the fuel jet, without counterpart in
the (downstream) mixing layer, is the plane of
antisymmetry for the principal mean strain rate
(henceforth referred to as a line of symmetry,
since a transverse cross-section only needs to be
considered). Because the mean strain rate is odd
about the axis, clearly, it is the magnitude of the
strain rate that is relevant for modeling the mean
consumption rate. The question has been raised
as to whether a model giving zero reaction rate
at the axis can be used to describe measured
properties of turbulent jet {or wake) flows with
diffusion flames (Williams ’), and this point is
to be resolved below. Because this work is moti-
vated by interest in pumping phenomena in the
cavity of a diffusion-type continuous chemical
laser, as noted earlier, this question definitely
warrants an answer: the upstream end of the
pumping zone has wake-like character that evolves
into mixing-layer-like character only towards the
downstream end of the pumping zone in chemical
lasers (Grohs??), Capacity of the model to treat
a turbulent diffusion flame for the planar-jet con-
figuration, with its plane of antisymmetry for the
principal mean strain rate, and to treat such a
flame for the mixing-layer configuration, with
its plane of symmetry, suggests that the model




can treat the turbulent diffusion flame for a wake
evolving into a mixing layer.

It is worthwhile to recall some well-known
properties of turbulent jets, in order to delineate
the portion of the flow field of pertinence here.
When fluid emerges from a nozzle into the stagnant
ambient, marginally unstable mixing layers form
at the lips of the nozzle, and, eventually, merge
on the plane of symmetry, where the constant-
velocity, constant-thermodynamic-property 'po-
tential core' terminates (Fig. 1). This distance
is on the order of six nozzle widths downstream
(Beer and Chigier®"; Davies““), and methods for
calculating this diatagxce have been advanced
(Lessen and F’aillet2 )« This distance irom the
exit is sometimes referred to as the 'breakpoint’,
because the jet begins spreading at a greater rate
from this distance downstream. Actually, even
after this merger distance, an (additional) dis-
tance of several nozzle widths is required before
the transitional flow becomes fully turbulent and,
in the chemically frozen case, a fully-developed
turbulence and self-similar representations of
velocity, species, and temperature profiles be-
come appropriate. It is common, since, in any
transverse downstream plane, in the chemically
frozen case, the flux of momentum, of discharged
fluid, and of discharged enthalpy above ambient
are invariant, to treat the jet as if it were emitted
from an ideal source, rather than from a nozzle
of finite dimension. Since the interest here is in
chemically reacting flows, source ideas are modi-
fied as convenient. In fact, in effect, it is taken
below that initial profiles for the dependent vari-
ables are given at the 'breakpoint'. In the ab-
sence of data, plausible interpolations between
nozzle properties, which hold at the axis at the
merger point, and ambient values, which hold far
from the axis at all downstream distances, are to
be adopted.

There are three observations about the model
just presented that warrant discussion. (1) It is
being implicitly assumed that the distance to tran-
sition is also approximately the distance to ini-
tiation of burning. This model is conventional,
and jet diffusion flames are commonly described
as 'lifted', because they stand off a finite distance
from the nozzle exit. Attempts to describe this
stand-off regime in detail inevitably entail arbi-
trary assumptions, the validity of which are diffi-
cult to evaluate (Tamanini2%). (2) Although more
experimental data are available for axisymmetric

*WOhl and Shipmnnu comment: '"".., there is
always some distance ... above the port for
which the flame appears free of turbulence.
Since, in that region, mixing probably occurs by
molecular diffusion, and since molecular diffu-
sion is a slower mixing process than eddy diffu-
sion, it is assumed that little combustion occurs
in this region. "

turbulent jet diffusion flames than for planar turbu-
lent jet diffusion flames, the planar case is being
developed here for two reasons. One is that exis-
ting diffusion-type continuous chemical lasers,
ultimately motivating this work, involve a planar

geometry. The other reason is that, for simpli-
city, a self-similar representation of the flow
field is employed, in order not to complicate the

energetics, which is of prime concern. Such a
self-similar representation has a greater domain
of validity for the planar jet than for the axi-
symmetric jet. (3) The linear rate of planar jet
growth with downstream distance, postulated by
self-similar analysis for the fully-developed turbu-
lent flow, has been questioned recently as perhaps
slightly in error far downstream (Kotsovinos“').
Even if such a discrepancy does exist, both the
magnitude of the effect, and the fact that distances
far downstream of the flame-tip length are of less
interest make this observation of little significance
for present purposes.

II. Formulation

The direct one-step irreversible bimolecular
chemical reaction

F+0-P, (1)

in which fuel F and oxidant O yield product P,
is considered. The flow geometry studied is that
of a low-speed symmetric planar jet of one reac-
tant (say, fuel) exhausting into a stagnant atmo-
sphere containing the other reactant. In the limit
of (1) R=P u t /u ,the (reference) Reynolds
number, gofng o infinity, ‘and 2) M - u /R 'Jr)‘-",

*Gutmark and Wygnansklz‘) remark: 'The nor-
malized turbulent intensities on the [center-]|
plane of the jet attain their self-preserving state
about thirty slot widths downstream from the
nozzle. ... The approach to self-preservation in
a two-dimensional jet, thus, occurs much earlier
than in an axisymmetric jet ... or a two-dimen-
sional wake. In contrast to an axisymmetric jet,
there is no indication here that the transverse
and lateral components ... of the velocity fluc-
tuations attain self-preservation long after the
[streamwise] component does. "

Aok
This variance in the linear rate of growth is

ascribed to the nature of the flow outside the jet

induced by the jet, itself.

Ao e
Since !hisexperimentl of Hawthorne, Weddell

and Hottel,” it has been established that the
ratio of flame length (by any reasonable
phenomenological definition) to initial jet
radius is invariant with initial jet velocity

in turbulent flow, to excellent approximation.
In nondimensional terms, the ratio is invariant

with Reynolds number, for Reynolds numbers
(footnote continued on next page)




the (reference) Mach number, going to zero,

the (nondimensional) boundary-layer approxima-
tions to the governing conservation equations
for the time-averaged description of the turbulent
reacting jet are:

(Pu), + (pv), =0; (2)
X y

Puu, +Pvu, = (P€u, ), ; (3)
X y y vy

PuT, +ovT, =L (0T, ), +Qw (4)
x y Oh Yy ¥

Puy, +evY, = L (pey, ), +w.,
1 x 1y Ui 55 2k |

with i = F, O, P, (5)

Here, (1) x = xk/lr and y = yk“r' with x2 0,
0Sy<=®, are the streamwise and normal spatial
coordinates, respectively, with £ = reference
length (the initial jet width); (2) u = u,/u_ and

v =v, /u_ are the mean streamwise and normal
velocity components, respectively, with u_ =
reference velocity (the initial jet velocity);

(3)p=p /P and T =T /Tr are the mean
density and (absolute) temperature of the mixture,
respectively, with P RT_ = Py where P, =
reference pressure (the background and jet
pressure); (4) Y. is the mean (stoichiometrically
adjusted) mass t}raction of species i;

(5) Q=Q/c T, is the specific heat of com-
bustion; whil% w (= -v'vF = -v'vo =wpl =

W /(P u_/t) is the mean rate of reactant con-
sumption (and product generation); (6) ¢=(k/urlr
is the eddy viscosity (or turbulent momentum-
diffusion coefficient); while 0, and 0; are the
(constant) turbulent Prandtl number and turbulent
Schmi. aumbers for species i, respectively,
such that €/0, and !/(7i are the turbulent heat-
conduction and species-diffusion coefficients.
Further, in this formulation, the (nondimensional)
equation of state is postulated to be:

p=PT =1, (6)

(footnote continued from previous page)

in excess of a couple thousand. This result
infers that molecular diffusion is negligible
relative to inviscid, inertial, macroscopic
processes for gaseous turbulent jet diffusion
flames. Thus, molecular diffusion is neglected
relative to eddy diffusion in the formulation.

* Here, the boundary-layer approximations are
invoked on an intuitive basis. That these ap-
proximations are valid ones is not at all a
straightforward matter to demonstrate for
turbulent flows. It must be proved experi-
mentally (or otherwise) that any terms dropped
from the equations are, in fact, small compared
to the terms retained.

where p = pk/p is the mean pressure, and the
molecular weights of all species present are taken
as comparable.

In the analysis that follows, the miean reaction
rate is postulated to be:

W o= (pﬁlu.yl» ¥ Yo

where P is the (nondimensional) function that
characterizes the rate of chemical consumption
relative to the rate of species transport,
for the case of predominant interest here, in
which y = 0 is an axis of (even or odd) symmetr,
for all the dependent variables, the factor u, is
odd about y = 0, the expression for W is con-
tinuous at y = 0, but w, (and all higher
derivatives) are discontindous. The source of
this difficulty is that, more generally, | u, . |

Because,

is ®°, where @ is the velocity-gradient factor
of the conventional laminar dissipation expression
written in terms of the mean velocity field com-
ponents. Whereas, [, is a satisfactory
approximation to ®° throughout most of the flow

field; near y =0 (where u, — 0), other dis-
carded terms in & should be restored in the
leading-order approximation for the local strain
rate. For simplicity, a conventional parabolic
formulation is adopted here, and, near y - 0,
an even function of y, which recovers whatever
degree of smoothness is believed important, may
be 'patched' into the (elsewhere uniformly valid)
expression for |u, | The amount of chemical
activity at the axis 18 believed to be of such
magnitude, relative to the amount of chemical
activity off the axis, over most of the axial
positions of interest, and the nature of the experi-
mental data for a reacting jet is such, that it is
believed that adoption of (7) is currently accept-
able on physical grounds. Thus, (7) is modified
locally at y = 0 only as required analytically.

For R*®, M~ 0, and p=1, with the intro-
duction of (1) the coordinate transformation
y
(x,y) = (x,2), with z = R‘ (—l-) dy”, (8a)
“o T

and (2) the velocity transformation

(u,v) = (U,V), with U=u, V = az, ¥ vE,
(8b)
(2) = (7) may be re-expressed as:
U, *V, =20 U=V, , V=¥ ; (9)
x z z X

*

A preliminary suggestion is that, in general, B
is inversely proportional to m=(V_m__ +V mo).
where m, and V, are the molecular weight and
stoichiometric coefficient, respectively, of

species i. Here, the casevVv_,v_ - 1, mo, m
mx is being examined, so that m = me .

R

F




UY, #VU. - (DU, ), =0 (10)
X 2 z z

UT, % VT, -<L (DT, X
X z Oh z
= Q(B| U, Iano (11)
: 1
+ -
Vire * Vg nap Wb,

= -(BIU,zl)YFYO. with i = F, O. (12)

In the above equations, D = ¢/T° and B = B/T.
For this system of equations, it is taken that
stagnant uniform conditions characterize the
ambient, specifically:

U=y, =0, T+ T, =},

&6 %, (13)

For symmetric initial conditions, at the center-
line, it is taken that

V‘O.U.Z.T..Y gl

z F'z' YO' z

as z= 0. (14)

(Obviously, for the sake of specificity only, the
jet is taken to contain fuel, but not oxidant; and
the ambient is taken to contain oxidant, but not

fuel.) The initial conditions at the jet exit plane
are

U=U,=1, T~ T, =const. 2 1,
) )
YF‘ YFj = const., Yo" YOj =0
1
£ 4 < pe it
for 0% z z; *(T)

as x"xj=0; (15a)

Y™ Yoo O Yo~ T

for zj=f(,l+j)<z<°

= const.

as x"xj=0. (15b)

The specified functions of (15) are compatible
with (13), and with the requisite of initially
unmixed reactants.

Since, experimentally (Bntt ~o,
is convenient to introduce the (turburents Shvab
Zeldovich functions ®_, linear sums of the
dependent variables T and Y;. The functions
adopted here are:

it

OY s (Yy Y Y
01=1+§Q(YF4YO)- €, (16)

From (11) and (12), it is found that the conser-
vation equations for these Shvab-Zeldovich
functions are:

ud, +ve, -—'(m', ), 0. (17)
g x q a q z 2

Directly, it is seen that the following integral

holds:

€ -aY +b and/or

+ + Y SRS S I -
TH+EQY_ +Y ) =alY_ -Y ) +b, 18a)

where, from (15),

-1) + % e = ¥
o (TJ QHP_I Otl
(\Fj 1 YO*’)
a0 PN e S,
b=1% ! e El 2 (18b)
(Y B i ;
Fj o=

It is noted that (18) can be rewritten to yield the

following expression for T as a function of Y .
and YO:
- 4 - Y )
(TJ. l)(\F#(YOx Yo)
e Y. *Y__)
Fj o=
: - . 3
YptYoa) Ye, You!

Physically, YF <Y and YO &O’ . Thus,
if the (so-called) adla{)atlc flame temperature
(defined to be the temperature achieved where

both Y . and Y_ are zero) is denoted by 13!"

then To is the l:r‘n.anxlmum temperature achievable
in the ffow system. Since, exp Umen(ally
(Hawthorne, Weddell and Hottel ; Kent and
Bilger" '), it is known that the turbulvnt diffusion
flame has finite mean structure, i.e., Y _ and
YF never vanish simultaneously, it follows that

(T.«DY~ +QY_.Y
oaa l‘l Ox
1TSS T 2b=]+ — . (20)
af Y )
Ty * Tou

It is noted that, even with the obtaining of the
above integral relating the Shvab-Zeldovich
functions, the dynamics ((9) and (10)) and ener-
getics ((11) and (12)) remain coupled. In general,
D and B, the turbulent diffusion and reaction

3

If an effective flame position for the turbulent
flow is defined by the locus Y X.. then,
the flame temperature T, is gwen #)y

T,=2T ,-QX, : (T

- - >
f af f af Tf) Qxf i,

where T_ and Xf are, in general, not
constants.




coefficients, respectively, are functions of the
temperature (and/or mass fractions of the reac-
tants) and the properties of the turbulence (in
second-order closure). As remarked in the
Introduction, consistent with (1) the preliminary
character of this investigation, (2) the nature of
the formulated model of the mean rate of reactant
consumption, and (3) the still imperfect state of
second-order closure for turbulent jet flows, in
what follows, it is taken that D and B are, at
most, specified spatial functions.

III. Approximation for the Mean Velocity Field

With D a specified spatial function, the be-
havior of the mean velocity field for the jet geo-
metry is governed by

U +%¥, =0 U=, V=oW
X z z X

Y. V0. < (o ) =0
x z z'z
(0s2z<= (S x<=x) (21a)
U+0 ag 2%, V, U, <0 as z~- 0: (21b)
1
U+1T1 for 0 2< z_ = (‘—).
r z ZJ # T
)
J= 0 for zjai(?l-.-)<z<°
)
as x~ 0. (Zlc)

Integration of the momentum equation of (21la)
with respect to z, subject to the boundary con-
ditions of (21b) and (21c), yields the momentum
flux K, an integral flow quantity, defined by

o«
K:ZS Uzdz:22.=<—l—). (22)
0 3 Ny

With the introduction of the 'effective' jet
exit plane x; (> 0), the 'normal length' function
z,(x) = zi(x/x.l). with z. = const., any the ‘center-
line velocity function U,(x) =“i(x/xi) , with
u, = const., and with the introduction of (1) the
(so=-called) similarity coordinates

R RO RIONEE

where ¥ = (x;/z,) = (constant) spreading parameter
(to be determined empirically), and (2) the stream
function

V(x,z) = V(E,N

U, €) 2z, (&) F(n)

(a;2,) €‘ F(m)

3 | ?
. (u‘xi)i F(n), (23b)

*

The plane x=x, (and/or § =1) is also referred
to as the 'breakpoint'“” and as the 'flame lift-off
distance'.

the velocity components and the vorticity (in the
domain 0$n<®, | £§<%) can be written as
~
U v, - |1.£ i I'"I(T]i,
z i
1 -f” ‘ .
¥ =¥, ==uf " 0F @M~ O (24a)
x 7 i
=3/2 _.
B, =N (u./z.)€ Fm)
z 27 S ik
-3/2 _«
Wui/xilﬁ F (. (24b
Thus, the boundary conditions of (21b) can be
written as
F'®) =0, F(0), F'(0)=0: (25a)
while, by definition,
! ~
F (0) = 1. (25b)

In turn, the conservation condition, (22), for
momentum takes the form
=l
SR £
J

K=sz:<

- 2
]
2tz § [}t an
T 1 0 .

= 2
2wk {F'm} an. (26)
7 il (5 S {
0
In what follows, an explicit eddy viscosity
formulation for D is adopted, namely:
D(x,z) = D(§) = K U _(§) z (€
2 K ¢ .
=K = - . 27)
(uiz.l)i y (u.lx.l)i (27

where K = (constant) eddy-viscosity parameter
(to be determined empirically). This form is the
one most frequently used in the analysis of two-
dimensional jets, because, in general, it has
yielded reasonable results (Schlichtingzg). For
K and Y related by X = 1/(4y), the boundary-
value problem of (21a) - (21b) reduces to the
self-similar form

F'tn) +z[r(mF'm)+ {F'(m}z - 0(0$N<=®); (28a)

F'(®) =0, F(0), F'(0) =0, F'(0)=I. (28b)
Successive integrations of (28a) yield

F'(m) + 2FM F'(M), = const. = 0; (29a)

F'm+ {FM)}Z = const. = F'(0) :{F(“’)}Z Sl (29b)

Further, (29b), itself, can be integrated to give




F(n) = tanh N:
F'®) = 1 - tanh®0,
F'(M) = -2 tanh 0 (1 -tanh®"). (30)

Based on the solution of (30), it is determined
that
s A B SR SR -
K = sz-\.l.j>-3(uizi)~3y (uixi). (31)

Thus, the solutions for ¥ and U, V are

v :‘l‘(u.x.)et tanh M
¥ kA
m~ (T_jr—-\) 5’ tanhn for u, ~ k3 (32a)
]
U = uiﬁ-é‘(l - tanhz n)
~ E-é(l T n for u.s 1y
v =y o e n1 - canh?n) -4 tanh n}
X it L

*’% e-é{"“ -tanhzn) - # tanh 17}

for u_l ~ 1, (32b)

The above solutions to (21a} - (Z2!b) are not the
most general ones; they are, in fact, the self-
similar solutions for a jet issuing from a slit at
& = (x/xii =0, and, thus, do not satisfy the
starting conditions of (21c). In light of the
improvement to be expected from alternative,
less tractable procedures, it is taken that

U =~ g’* (1- tanhzﬂ)

-2

()

1. tanh” {(:;l) (;’-‘-—)-] z} , (33a)

*Il it is taken that U(£,0) = U*(ﬁ) = u_E.t for
1<§<® andthat U(,0) =} for 0<§<1,
it is consistent to take u, =((u ). /u_ )=1,
For u, =1, from (31), it follows t % =

("i/ ) =(3/4T.) and/or (xk)i/lr‘s‘.

[’;3/4)/((7k)./7r)]7. Thus, the (non-
dimensional) location of the 'effective' jet
exit (or 'breakpoint') plane, x., is linearly
proportional to the jet spreading parameter,

.

with

£l N
U<K—x—} -® for z =0 as =0,
i

%

81 =71
[ X
U= #(~) {
%

[

SEPA™ 8- 4 A%, &

for 220 as x+ 0, {33b)

encompasses the initial conditions of interest for
present purposes (i.e., for x<x.  and/or £ 1i.
Thus, (32) furnishes the solution for the jet flow
field, with ¥ an (empirically) assignable para-

meter.

IV. Rate of Reactant Consumption

With 9 =0, the behavior of the (modified)

Shvab-Zeldovich function Y = (Y ¢ L

=Y _ . +(Y -Y )) for the jet geometry is

(0Sz<=®, 0Sx<=); (34a)

Y=<0 an 5%, Y,Z‘O a8 2~ 0; (34b)

= 1
i 4 0sz2<2 . [yl
¥ (YFj YO") for z 7} 3 I‘

Y- o0 forzj=é(%><z<°as x ~ 0. (34¢)

The species flux integral associated with this
function is

©
N= 280 UYdz = 22,(Y 4V,

/1
s ('—f‘) (Ypit¥oul (35)
j

In light of the approximations already adopted for

the velocity field (cf. (32)), it is taken that Y is
of the form

Y(x,2z)=Y(,M =Y (§) Gm) :cie”(;m) . (36)
With introduction of this form for Y and the
above-mentioned forms for ¥ and its derivatives,

the boundary-value problem of (34a) ~ (34b) reduces
to

a’m +2o[Fm c'm +Fimy G |- 0

{0 S p<=); (37a)
G®) =0, G'(0)=0; (37b)
G(0) = 1, (37¢)




Integration of (37a) yields

G'(n) +29F(N) GM) = const. = 0; (38a)
b n
G = exp {-20 F(nlmn]}
‘ 0
2 o
1-{rm} | = 1 - tanhn. (38b)

Based on this solution for G, it follows that the
species flux integral N is given by

l N\
om) x (’I.)(YFj+YO°)
- J
- 2(uC.2z) \ F'MGm dn
1 | R .'0

Nz22z (Y. .+¥
3R

2 i b 7
- (u,C x,) F (M) G(n)dn

f 1y CiNES 2,140 ]
i) G L Ut
1

= o

Thus,

|~

i
\ )(YFj+Y )

i i

i (i\) e

3 L) for u, = 1, (40a)

where
- 10) = S (1 -tanh’m) ' 17 an

0

! 20
(-0 0. (40b)
“0
Values of I(0) are: I1(0) =1, I(#)=m/4,
I(1) =2/3, 1(2) =8/15, ... . The range of 0 of
interest is (approximately) # $0 $ 6/5 (cf.
Reynolds™ " ). It is noted that, for ﬁ £0s],
(8/3m) < (2/31) € 1. In what follows, it is
taken that (2/31)~ 1,

Thus, based upon the preceding analysis, the
solution for Y is of the form

- 2 -% 2.0
Y=o () (Yp;+¥oe) 67 (1-tanh™n)

~ (Y +Yo,,)€'i (1-tanh®n)’,

i.e., Ci~(YI_.. b JPE)

O=

for u.(u)"l- (41)*

“If an effective flame for the turbulent flow is
::;med by the locus YO=YF , then, Y :YO“

Yoo

(YFj+Yo_)

£;b (1=~ unhzﬂf)oal

(footnote continued in next column)

This form is not compatible with the conditions at
€ = (x/x,) = 0. As with the velocity field, it is a
self—sin‘ﬂlar form compatible with a passive
scalar issuing from the jet slit at § \/x ) =0,
Again, in view of the improvement to be ‘\p“ te
from alternative, less tractable procedures, it

is taken that

Y ~ 5
(YFj (o L
-2 e -1 3 \e
\ 2y
(—x'/ I-tanh‘ —‘l;\—-x—, ' (42)
x ' 3 I\x ¢ ‘
1
encompasses the initial conditions of interest for
present purposes (i.e., for x< x_and §= 1),
1

Consider now the behavior of Y _ . With
Oi = 0, and with B a specified constant, since
Yo ¥ - (Y - YF" the boundary-value problem

for YF (cf (12) = (15)) can be written as

Uy +VY -l(l)\' 0 U
22

F'x F'z © F

-=-slu, I]v LI - R Y

(0 z<x=, 0SS x<=); (43a)

=¥ , = ®, , - <~ 0:
YF 0 as =z YF " 0 as =z (43b)

IR T S S Y I
F Fj or z zj-_,\r)

YF*O for =z, -é(%\)<z<m as x~ 0. (43c)
J

St

For YF of the form

= 44)
YF(X.Z) X(,n), (

(footnote continued from previous column)

gives the shape of the flame. Thus, in the
present model, this shape is explicitly a function
of YFj' YO”' and 0 only, and is not a function

of T. or T (=1). (It should be recalled that
all lﬂectea have been taken to be of comparable
molecular welgh Furthermore, the 'length’
of the flame E (with 5 6 for n, 0) is
given by

[ g B ) @
el SO
£?~ { FYO.,O } .

It is seen that the (mean) position of the effective
flame, as defined here, is independent of the
model adopted for the mean reaction rate w.
The 'thickness' of this effective flame does
depend on the model adopted for w.




from (43), (44) and (32), (41), the boundary-value
problem for X(£,M) in the domain (0 < 7<=,
15§ < ™) can be written as

X,

2
+200X, _ -40 (1 -
m © ‘n 40 (1 -0)§ X,

3

f 3
= (80YB) {0o(1 - P

.

Yy Toeti.o.x]
X'\o” Ciﬁ (l-w)-XJ- .
with © =@(M) =tanh?n; (45a)
X0 as N=, X,n‘O as N~ 0; (45b)
D L Xi = fnc(n) as € — 0. (45c)

To complete the formulation of this boundary-value
problem for X(§,7M), the profile at the 'effective'
jet exit plane (§ = 1), i.e., X; = X;(7), must be

specified. Here, this initial profile is taken to be

o o
X, = X[ = A (1- 0% =A (1-tanh’n)’,  (46)
with Ai = const. (to be specified), For this
initial profile for X, it follows that the initial

profiles for YF and YO' i.e., YFi(m and
Yoa””’ are
Y . =X =A (1-09% (47a)
Fi 1 i
Yoi " You ¥ = Y5y
s ¥, T e XY (C. AN 0™
o= £k O= ;o 7
(47b)
On the cengerline at the 'e[iecgive’ jet exit,
YFi(O) = YFi and YOi(O) e YOi' with
S . TA, IO ¥ <0G =R (48)
Fi “i' "ot "O® i

For Yo &Y . and Y(())-"' 0, consistent with no
combust’ion uﬂatream ol the 'breakpoint’, it
follows that A m Y and that C . m (YF, +Y0m

G )
(cf. (41)). He}xce, F415c) is taken to be

20
X Xi~ YFj(l-w )

with @ =@(n) =tanh 1, as £~ 1. (45¢c)

Here, it should be recalled that, in the
development of the present model boundary-value
problem, (45), there are two empirical factors:
Y, the growth rate; and B, the effective
Damkohler number. Thus, the model retains
the one empirical constant usually present in
chemically frozen flow, ¥, and adds a second one
for the chemistry, B. More specifically, in this
model, it is the product YB that is required to
characterize the reaction contribution. (With

respect to the fluid mechanics, it is noted that
the use of, at least, one empirical
assign the growth rate is implicitly present in
second-order closures, as well,)

constant to

With the determination of Y
the solutions for Y() and 1
from

X from (45),

are determined

?

/ . 11 6";41-@“10‘
P LT

-3 20
-r\'r.é‘(l-wv -X
s ;

i -; 2 (y
e e s .
LYo~ Yt You!t

- 20
'l'nsrlHTJ_-Hé “(l-07)
| .

- o
4 Q[Y”E’ (1 -‘Dzl =X

( i -% 20 :
= AT, = 1}+QY . tE “(l=0")|=0X.(50)
L ] Fj-
Here, for completeness, it is noted that, as
=t
2.0 y
- ~ Y | yE = 51la)
YF YFi YFJ( © (51a
- f 20
YO YOi&:YOm‘LI-(l-OD Ib)
T~Ti~l+(Tj-1)(l-oZ»° (51c)
V. Approximate Solutions - I
Under the transformation
(€,m)~ (8,0), with 8 = E_g. ® =tanh 1, (52)

the boundary-value problem for X -X(8,0), in
the finite domain (0$68 €1, 0S¢ S 1) can be
rewritten as:

2
- » - l«@ §.aZ - oﬂ:
(1 (D)Xoo 2( )‘wa 2

ﬂ~9x,9

@yBro|xlly (1-6 2,01
-(4yB)o lom -wk(l-w\‘

oot x| 1]

- IYFﬂe(l-o Y Ve 1(53a)

X-=0 as ©~1, x,w*o as ©*0; (53b)
(53¢)

o
X‘X,-YA(I-OZ) as 0~ 1.
i Fj




The first and second integrals of (53a), taking
into account the boundary conditions of (53b), can
be written as

) 20 0 n d‘Dl

o O 20 ~ >0 ; (54a)
(1-0%) “o <1-o?)°
A [ %2 Nae do,

X=20 \ B 20 > s (54b)
o [ Yo -e)) | a-e))

The value of X at the centerline, X(6,0) = XO(B).
is, thus,

i 1 [ %2 0 ae do,
X =20 C S 20 21-0° (54¢)
Yo 1Yo (1-ef) | (1-05)

To gain approximate solutions, an iteration
scheme for the determination of the solution(s)
for X(6,0) from the integral form(s) of the
boundary-value problem, (54) , is proposed. To
initiate th’ . sc” =me, it is taken that the zeroth-
approximz ion + r X(8,0) is of the form

o 20
-x°0)(1-
X g,(8,0) =X°(8) (1-0°)
20
~YFjZ(6){9(l-w f } (55)

with Z(A) a function to be determined (subject
to the condition that Z(1) = 1) (cf. Bush,
Feldman and Fendell9).

With the introduction of this approximation,
evaluation of the integrals of (54c) yields the
following (ordinary)differential equation for

Z(8):

82’(6)-[(a-x9)+x92(9)] 2(8) =0; (56a)
Z(1) = 1. (56b)
Here,
am (2vB) 1Y, ~ (2vB) (3) ¥ (57a)
o= 3) Yow'
.
X® @2YB)I (Y +¥oo) (57b)
A 2yB) T Y . s {57¢c)
~ (2YB) Fj
where
2 20
Izlm)z\ (1-0°) de, (58a)
Jo
+0
1 [n-u-oZ)‘ ]
J=J(0)=% § See—tl ™ )
¥ode (1-6%

The integral [(0) has been introduced previously;
the integral J(@), with J(1) - 7/15, I(#)

- (3r-4)/9, ..., is introduced here for the

first time.

The solution of (56) is determined to he

8% exp {x(1 -9}

Z(9)= 7 1 - (59)

1+ X \ 8" exp X(1-8,)rdb
Jg 1 1 I

In turn, with the evaluation of Z(8), the first-
approximation for X(A,0) is found to be

-

= |1-R G,DI, (60)
Xm(e.w) x(o)(e.m R @0

where X 0)(9,w) is given in (55), and where

(
R(”(G.w:nrl\[(w)-rx-X'/.(ei :BA‘(o». (61)
For =1,
.
= (62a)
Ao =15
gz 33
= - s (! }
Ay =730 -7 9 e

while, for 0 =%,

[ =i
(n/2) {1-(1 EFLN ] DL

2
Ar“’) b [«o+

T -
(1-0%)
(63a)
" 2.3
A =37 ['o(l-w )
>
(m/21{1-(1-0%" L sin" o
£3 T
(1-07)
Z Y
{(l-w )é-(l-wi*
+2 IR . (63b)
(1-97)°

It is noted that A_(0), AJ(o» - 0, such that
R, (6,0) = Rol (9} = 0. "Further, at the 'break-

chr{t' plane, (lg . 1,

R“)(l.w):Ru)iw) - aAI(w) - (X - MA‘]“D)

«
~ (2YB) Y rIAI(w)-_lAl(w) |

Q=

~0(Al(w) -(-;—J)A‘,(w) | (6d)



e

Thus, R, (1,0) =R, (0) =0, while, R, (1,1)=
1

R ”.(l)~( }Or #£0, w‘i”’:l f, a (weak) func“gn of T,

w‘mge numerical value is less than unity. In

general, 0 = R(”i(w) S fa, for 0s@s ],

3 ] i
For YF YF( @) given by

T ™%
[ | 20
~Y Z(1- r10(1-¢7) - 65
\F’j 121 R([;Ul( © (65a)
» = » e . .
then, \O \0( ,©) is given by
\O- ‘10@-(\ -X“))

s f 20
~‘.O,ll-l9(l-w)}l

[ [ 2.0
'YFjlll'Z”'R(l))} 19(1-¢a )}J (65b)

To the same order of approximation, T =T(8,¢) is
given by

(T~ D+ QY
T lp—de——— 21y oy
Y+ ¥ou) (1)

~[1+ (T.-1 {801 _wz)o}]
) \
( 20
v, I{I-Z(I-R(“)} {81-0% }]
= ll + {(’rj- 1)+QYFj} {O(I-wz)o}]

- Qv [{zu SNISCE -wz)"}] . (66)

For 6 =1 (i.e., £ =1), from (65) and (66), it is
determined that

20
YriltYFj(l-O) (l-R“)i), (67a)
2.0
¥y ™ YOQ{l-(l-o ) }
20
-YFj(l-w) R“)i' (67b)
T~ +(1j-1)(l-¢2)°
vy (1-04° R (67¢)
Fj (mi* .

A comparison of (67) and (51) indicates that the
original initial conditions are not satisfied exactly
by the first iteration solutions.

From (59), it is seen that, as 0= 0 (£~ =),

3
2~ 1,6 [1 + o®) |, (68a)

where

exp X
[40 = 1 = . (6G8b)
1 +A °] exp ‘X(1=-9)-d6
1 1 1
0
Thug, the downstream behaviors for g ',( , and
)
T, along the centerline, are
o 1+
e 8 e
\*_ IO ¥a
o
Pty - (Y 308 & F e (69b)
\O \O"‘ HI-'J \(.)T'» + )
o ; ol
D A e o SR 1 TR s T S - S, (70)
St Fj
where, for explicitness, it is taken that (1 -1) :
)
QYI_,( is a positive quantity. Indeed, based upon

(68)," it is found that the downstream behaviors for

YO and T, in general, are

e
a s / Gl <0 ) P #oou (T
Yo~ You = (Yp+Yg,) 8(1-07) )

7 h] p
R0 1+i(1'.-1)+QY " *-5tl-w“)°- bcdn « (T2)
J Fj- L

With respect to the temperature, it is seen that,
downstream, for a fixed value of 8, 1 is a
maximum at ® = 0 and decreases monotonically
as ¢ increases. Since reaction consumes Y __,
it follows that Y_ S Y_. 8(1-0%°}, the ‘froben
solution(for w :}6), and, in turn,that T is aug-
mented (or left the same) when reaction occurs,
relative to the nonreacting case. (This result
might have been anticipated from (50); here, it
follows directly.)

VI. Approximate Solutions - 1

A more explicit, but, probably, less accurate,
approximate solution of the nonlinear boundary-
value of (45) is obtained now through the use of
Oseen linearization (Lewis and Carrier,
Carrier™“; Bush, Feldman and Fendell '),

Here, (45a) is approximated by

X, ppt 200X, - -:crex.£

~ (80B) a1 X, (73a)

with the constant a considered to be an assignable
parameter (that permits the solution of this
equation to more adequately approximate that of
(45a)). The boundary conditions are those of (45b),
ive.,

*In Oseen linearization, terms are approximated
in a manner to retain their essential roles, but,
also, in a manner to generate analytic tract=
ability. Justification lies entirely in the
a _posteriori demonstration that, to an adequate
degree of accuracy for the purposes in mind,
results satisfy the original boundary-value
problem,



-

-— e

X=-0 as N+, X,n<0 as N—=0. (73b)
In lieu of (45¢)’, it is required that
X“\Fj an E=~1, =
x
Xan = Y_H as €~ 1, (73c)
: Fj
0
where
o 1
§ & O y d
H = H(O) = \ (1-tanh™m) dn =\ flo.
<0 0 (l=g")
(74)
Clearly, H(0) is defined for 0> 0 only. H(¥) =

w/f2, HEY) =1, H(3/2) = /4, H(2)=2[3, cus »

On the left-hand side of (73a), the approxi-
mations tanh N a 7 and sechNM=a~ | are employed;
while, on the right-hand sige, the approximation
2| Fm| Y o6, ~ ay,,n is employed. A con-
ventional procedure is to assign the constant a by
requiring that the solution to the substitute equa-
tion satisfy the original equation in an integral
sense over the range of independent variables of
interest, i.e., 1§ <=, 0snp<=, This pro-
cedure is unwieldy in the present case. Here, for
explicitness, it is taken t!}at a may be assigned
by the equation of aY _ _7“ to # |F“lY . at the
value of N, for which the latter expression is a

maximum. (1) If it is arbitrarily taken that
Yo~ Yo, then, $F' | =0(1-0%, with _
© = tanh M, isa maximum at 71 =tanh ' {1//31},

and a ¥ 0.888. However, such a value for the
factor a is too large, because Y has been set
to its maximum value, a value attained only at
large £ and/or 7N, where the combustion term
i? nm‘all. (Z)ifo' is taken that Yo w Yq’i"

Y, {l~(1-07) * (cf. (51b)), then, a Decomes
a?unétion of o, i.e., a =a(0). In t’ast6 the
equation of an? to (1 -0%) {1 -(1-¢°) at the
value of M for which this latter expression is a
maximum yields a(%) £ 0.0928, a(1)$ 0.387,

ee« « Such values for a are too small, because
throughout much, though not all, of that portion of
the £,7n-plane, where the combustion term is
appreciable, Y. > Y _ .. However, such esti-
mates suggest tee range of interest for values of
a for physically pertinent values of the other
parameters. Actually, numerical experimen-
tation by the authors indicates that a(®) £0.28,
a(l) £ 0,48, ... succeed fairly well. However,
the adequacy of these values should be examined
in each instance.

Under the transformations

$

¢ <104k, 0 =20)7n, (75a)
* “e K
XE,m=X (€ ,n), (75b)
(73a) takes the form
“ % "> * tz *
x.",n, N X pe zx.v =Qn X, (76)

12

with Q (2yB) (aY /o) 2 0.

S ut n o his
PT : olution of this
equation 18 SO'\luht of the form

2 m
X (& .,n) E : /\”1‘5 m exp «Z (E M

m=0
1
with A 0 for m odd for the 1se under examm -
. - m
ination. Here, for simplicity, only the m 0

henceforth, denoted

term is pursued (with :\”rﬁl,
by A'(€£ )), such that

X"(E.','n“) A (§ Vexp -7 (£ 17 - !

This form satisfies (73b). For this form to

satisfy (73c), it is determined that

AT(O)=A =Y_. ;
1 F)
p— >
* : [y 1 g
Z(0) =2, - ! = = (78b)
S AL (20)V° H
S'lhpce H = H(o), Z. Z.(0), with Z.(%) 1w,

Zi(1) =n/8, Z[(3/2)=4/3n, 2{(2) “9n/64, ... .
A*(ﬁ*) and Z (£ ), for £ >0, are assigned to
satisfy the approximate partial differential equa-
tion, (76).

Substitution of (77b} into (76) gives
%! O
[A +2 A ]
e ;;:2 <’ % .
~AnMN [Z (1-2Z )-2Q =0, (79)
where primes denote differentiation with respect to

S*. Equation of the coefficients of powers of N to
zero yields

w*! s % & <
2 «Z (l-2Z )=20 : (80a)
! * %
A ¥ Z A =0, (80b)
The solution for Z)Il(ev) is determined to be
* £ 3 )
2*. 88 t1)~(S -1) E exp{-S & 1
8 |« N :. 3 8
4/ 1+E exp {-S € ]
* :«%
S =(l+40 )= 1;
* e
g 9 )R
i
E = . (8la)

W * e
(S -1) 4-42.l

Since (S¥+1)2 2 and since 4/m S 7. S 9n/16< 2
for # S0 €2, it follows that E > 0 (for this
range of @). In turn, it is determined that the
solution for A*(E*) is

0

-
% * B v
A = A exp {- K z ‘da !
i Jo 1)
* 1 + E* ‘* E
=A exp{-i(s FDE F.(81b)

IoE'exp f-SY:E)k} '
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Based upon these solutions for Z and A , it

is found that the approximate solution for X(§, 1)
takes the form

5‘:‘ s * I
‘ bo|EtLE -5 -VE |2

exp ! - % .
5’5 +E

As £ 1,

X=X

% 2
Py ©XP {-i,»omzi ynél, (83a)

with Ll given in (78b); while, as £~ =,

46"+

*
X~Y. & exp {-30(s +1n’} . (83b)

From inspection of this approximate, Gaussian-
like form for X, it is noted that the width of the
profile decreases with inireasing *€' for fixed 7M.
(This result holds for (S +1)> 4Zi, iee., E >0,)

* *

For Q =0 and/or S =1, i.e., for no chemi-
cal reaction, the approximate solution of (82)
becomes

3
*
x~vFj(“E ) exp -o(—-‘—*)nz . (84)

£ 3
£ +E E+E

For this case: as £ -1,

e
X - YFj exp {-0 (ZZi)ﬂ }. (85a)

just as for the general case; while, as £ -,

x«yl__jg'i exp{-oflz}. (85b)

The self-similar exact solution for X for the case
of no chemical reaction, as calculated from (45)
with B =0, is

#

Xo ¥ %0 - ua’yl.

Fj (86)
For £~ =, it may be seen that the approximate
solution decays appropriately in 7 as N~ 0, but too
rapidly as 7 - =, Still, the general behavior is
recovered.

» Division of (83b) by (85b) indicates that, for
Q >0 and/or S > 1, i.e., for finite chemical
reaction, as £~ >,
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XQ‘;’> 0 Xsf> 1

Xo*= 0 %5*-

-1 (s -1 _ ?
N exp " =i0(S - 1)N" -+, (87
Thus, for finite chemical reaction, the fuel pro-
file tends to be of smaller width and magnitude

(than for no chemical reaction).

VII. Numerical Solutions

A conventional Crank-Nicolson implicit finite-

differencing scheme (cf. Bush, Feldman and

Fendell”) is employed to obtain numerical solutions
to the boundary-value problem of (45), In fact, the
program has been written to solve the differential
equation

2
X, +Zoox,n- 40 (1 -071EX,

m 3

- 80yB) lo(1-0%)} .
n

3 - g -0 x ( |

X YO:r

o
(45a)

Clearly, for m=n =1, (45a)’ reduces to (45),
i.e., this model with the more generally ordered
reaction expression becomes the model treated
heretofore. In the scheme used here, three-point
differences approximate the derivatives in 1

(for 0 $7M=<9), with the step size prespecified
and constant (i.e., An = 0. 1); while, two-point
differences approximate the derivatives in §

(cf, Schlichtingzg). Extrapolation of rates of
change in £ of previous steps establishes the
local step size in £ (except, of course, for the
initial step in §). The even-symmetry gradient-
type condition at the axis is treated (in standard
fashion) by the simplest central difference ex-
pression. The value of the dependent variable at
the one point (external to the field) introduced by
this procedure is eliminated by having the dif-
ferential equation satisfied at the boundary point
(Fox33), For m # 1, Taylor series expansions
are used to linearize the nonlinear (chemical con-
sumption) term about the nominal local solution
for the fuel mass fraction; thus, only a simple
inversion of a tridiagonal matrix is required for
the linear algebraic equations arising from the
finite-differencing. Convergence in n dependence
is taken to be effective invariance between suc-
cessive approximations.

Through numerical integration, using (8a),
(23a), and (50), it is readily possible to transform
back to x,y-coordinates from £,n-coordinates.

It is convenient to characterize results in
terms of the integral of the fuel mass fraction,
IF = IF(i), and the normalized integral of the




=

fuel mass fraction, IP'

i , = 1 (8) = LEV/I(1) =
P Fi' where

@® ©

1. = }‘0 Xdm 1. = 50 X, dn. (88)

Numerically, IE, is obtained by application of
Simpson's rule.

VIII. Results

A review of the experimental data on gaseous
turbulent fuel jets exhausting into air is useful,
before a presentation of the predictions of the
present model is given. In this way, the reader
may be made aware of what hot-flow measure-
ments are actually available to validate models.

The only data on planar turbulent free-jet dif=-
fusion flames (known to the authors) are the very
limited measurements due to Kremer, 4 who
examined mainly axial behavior for city gas
(principally hydrogen and methane) issuing from
a 150 mm slot. In 100 slot widths downstream,
the axial fuel mole fraction dropped by approxi-
mately one-half; while, the axial temperature
increased from 100°C to 800°C. A Reynolds
number of 3320, based on slot width, produced
a fully turbulent flame. Also qualitatively, the
spreading of the reacting flow with downstream
distance was less than that of an isothermal jet.
Kremer recommends use of a turbulent Schmidt
number O = 0.75. * These few statements are
about all the data available on planar jet diffusion
flames.

Thus, it is necessary to consider experimental
results from fuel jets issuing from round orifices,
even though one can only qualitatively compare
axisymmetric data with planar theory. It may be
remarked that Bangert and Roac h3 recently com-
pared predictions (obtained by numerical inte-
gration), based on a parabolic reactant-consump-
tion model, very similar to the one proposed here,
to the data (for the radial profiles of temperature,
fuel mole fraction, oxidant mole fraction, and
product mole fraction) furnished, at several down-
stream positions for an axisymmetric hydrogen
fuel jet exhausting into coflowing air, by Kent and
Bilger” (see, also, Bilger and Beck!8), Bangert
and Roach found that, for m =n =1, B =12 gave
uniformly excellent agreement between prediction
and experiment for the jet speed/coflowing ambient
stream speed ratio ranging from 10 to 2; further-~
more, there was rather weak sensitivity to moder-

*Kremer'u conclugion is based partly on non-
reacting flow data; however, for axisymmetric
turbulent jet diffusion flames, Eickhoff35 states:
'"Compared to the data evaluated for non-reacting
jets ..., there seems to be no significant in-
fluence of combustion on the ratio of turbulent
momentum to mass transport, "
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ate changes in B (say, an increase or decrease

in magnitude of 30%) (Bangert, private communi-
cation). In particular, the overlapping, coexisting
mean profiles for the reactant mass fractions, well
known since the results of Hawthorne, Weddell and
Hottel, 5 are recovered by the model. Also re-
covered by the model are (1) the increase and, then,
decrease of the axial temperature, (2) the mono-
tonic decrease of the axial fuel mole fraction, and
{3) the monotonic increase of the axial oxidant

mole fraction, all with increasing downstream
distance, as reported by Kent and Bilger. IHere,
the aim is to point out other experimental evidence
that validates the model. Furthermore, the
present model is appreciably simpler than that of
Bangert and Roach in that (1) it uses a coordinate
transformation to correlate the compressible and
incompressible equations; (2) it uses an explicit
eddy viscosity in preference to a two-equation
field-type closure to specify the turbulent diffusion;

and (3) it uses a facile self-similar flow field (for
a stagnant ambient) in preference to calculating
the actual nonself-similar flow field. These
appreciable simplifications, previously shown to
permit approximate closed-form analytic charac-

terization of the model, are revealed below to
sacrifice little in the way of predictive capacity.

For axisymmetric turbulent fuel jets exhausting
into stagnant air (for cases of high jet speed and
small diameter, such that: the Reynolds number is
large, so that molecular processes are negligible
relative to inertial effects; and the Froude number
is large, so that buoyant accelerations are negli-
gible relative to inertial accelerations), the fol-
lowing experimental results are reported.

l. Reynolds number. Not only is the length of the
turbulent flame known to be but weakly a function
of the Reynolds number (Hawthorne, Weddell and
Hottel”), but also the axial temperature distri-
bution is but weakly dependent on the Reynolds
number. Kremer " states that the number of
nozzle diameters downstream at which the maxi-
mum temperature occurs is increased by 25%, and
that the magnitude of the maximum axial tempera-
ture is increased by 15%, when the Reynolds
number is increased by a factor of 4.

2. Temperature distribution. At fixed small
distances downstream, the maximum temperature
occurs several nozzle diameters off the axis
(Chigier and Strokin37). The radial position of the
maximum, and the magnitude of the maximum,
first, increase, then, decrease with increasing
axial distance downstream. The magnitude of this
maximum, with respect to downstream position,
rises but slowly after about 10 nozzle diameters
downstream; peaks at a value below the adiabatic
flame temperature at about that downstream dis-
tance at which the maximum goes to the axis
(roughly 100 diameters); and, then, decreases
appreciably with farther downstream distance
(Kremer"’: Lockwood and 0didi38). I he tempera-
ture on the axis rises monotonically until about




100 diameters downstream; then, decreases
(Kremerl®; Guenther and SimOn'i ) These re-
marks concerning the temperature field hold for
a coflowing oxidant stream as well, whether that
stream be heated (Takeno and Kotani® ') or not
(Kent and Bilger17: Bilger and Beck'").

3. Flame contour [locus of equal (stoichiometri-
cally adjusted) mass fractions for fuel and oxidant,
where, experimentally, an effective composite
fuel profile is defined|. As interpreted by Zimont
and Meshcheryakov,4 Kremer!® finds that the
flame contour: first, increases with downstream
distance; then, decreases to the axis. However,
the flame contour envelopes the maximum tem-
perature contour (i.e., the flame contour lies at
a larger radial position at all downstream stations,
and goes to the axis farther downstream than does
the maximum temperature locus). Measurements
of the distance downstream at which the flame
contour goes to the axis, i.e., the flame length,
are given by Kremer, " who found that for other
parameters held nearly constant, a city-gas (HZ,
CHy, CO, ChHm:i Ny, CO3) turbulent jet dif-
fusion flame is one-and-one-half times as long as
a carbon monoxide flame, and a hydrogen flame is
two-and-one-quarter times as long. Most other
purported measurements are based on visual
observations (cf., e.g., Hawthorne, Weddell and
Hottel °) and are not reported here. Incidentally,
Brzustowski?Z finds that published analytic ex-
pressions, asserted by their proponents to be
adequate for predicting flame length, are not
adequately verified. This is not unexpected, in
that such formulas include unattained quantities,
such as the adiabatic flame temperature (e.g.,
Hawthorne, Weddell and Hottells), or ill-defined
quantities, such aza] the mean flame density (e.g.,
Beer and Chigier™ ).

4. Species profiles. On the axis, the fuel mass
fraction monotonically decreases, while the oxi-
dant mass fraction monotonically increases, with
increasing distance downstream. The product
mass fractions increase until the fuel is virtually
exhausted, and the maximum axial temperature is
achieved; then, the product mass fractions de-
crease with further downstream distance (Kremerlé‘.
Guenther and Simon39). At a fixed downstream
station, the fuel mass fraction decreases mono-
tonically and the oxidant mass fraction increases
monotonically, with increasing radial distance
from the axis, At a shorter downstream distance,
the product mass fractions increase to a maximum
a few nozzle diameters off the axis; then, decrease.
At about the same downstream distance at which
the fuel species are effectively totally depleted and
the maximum temperature is first achieved on the
axis, the maximum of the product mass fractions
is also achieved on thT axis (Hawthorne, Weddgll
and Hottel‘s; Kremer 6; Lavoie and S<:hladex-4 )
These same characterizations hold for a coﬂowinq
ambient oxidant stream as well (Kent and Bilgm-l H
Bilger and Beck!8), Chigier and Strokin> ' show
that a passive scalar, such as the mass fraction
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for an inert species, in an axisymmetric turbulent
jet diffusion flame employing methane in stagnant
air at an exit Reynolds number of 6500, satisfies
similarity concepts, in that the passive-scalar
field (1) decays (monotonically) axially, with this
decay inversely proportional to the first power of
the axial distance; (2) decays (monotonically)
radially, with this decay a (Gaussian) function of
the square of the radial distance/axial distance
ratio. The rate of axial decay is about 0.41] times
as rapid as that for the nonreacting case.

5. Rate of spread. Turbulent axisymmetric jet
diffusion flames have long been known to have a
significantly lower rate of spread than a constant-

density nonburning ’e_‘t (Beer and Chigier®
Chigier and Strokin®‘). Whereas a nonburning jet
may spread at a half-angle of 5-7.5", a burning
jet spreads typically at 2.5-3%. As noted by
Zimont and Meshcheryakov, 4
dence is presented by Kremer.
related statement, Zimont and Meshcheryvakov

note that, in a nonreacting jet, the analogous con-
tour for the analogous passive scalar (linear
coupling, or Shvab-Zeldovich, function) is uni-
formly enveloped by the flame contour, and the
axial intercept in the nonreacting case is very
nearly half the distance downstream that holds for
the reacting case. Effectively, then, Y 1is reduced
for the reacting case. FEquivalently, x; is re-
duced, since x; and ¥ are linearly proportional
through z;, e, x; =27, (1 he concept of
modifying x; , ina contractual-mapping-type
empirical adjustment, as opposed to modifying ¥,
in a rate-of-spread-type empirical adjustment,

is set forth, for example, by Vulis and Yarin. 44)

confirmatory evi-
y ! )
* Ia fact, in a

6. Velocity Field. Chjgier and Strokins‘ and Zimont
and Meshcheryakov = furnish particularly clear
comparisons between nonreacting and reacting
jets, for axial decay of the velocity and dynamic
pressure. The decay from initial value is re-
duced in the reacting case.

7. Turbulent diffusion coefficient. Whereas the
previously discussed quantities may be directly
measured, 59“ quantity must be deduced. Chigier
and Strokin®  and Zimont and Meshcheryakov
concur that, axially, the turbulent diffusion coef-
ficient for the reacting case is smaller than that
for the nonreacting case for about 10 nozzle
diameters downstream; however, by 50 nozzle
diameters downstream, the reacting-~jet coefficient
is twice as large, and, by 100 nozzle diameters,
three times as large. Chigier and Strokin3’ also
suggest that the turbulent diffusion coefficient
decays to one-third its axial value at large radial
distances, at distances of 20-30 nozzle diameters
downstream,

Attention is now turned from exposition of
experimental data to preseatation of predictions of
the model. First, however, it is noted that, em-
pirically, ¥ = 7.67 for the planar nonreacting case
(Schlichting™”); it is known that ¥ is reduced in




value for the chemically reacting case (Kremer“).
Here, based upon axisymmetric data, since
quantitative planar data are not available, ¥ is
set equal to one-half of its inert value. Second,
the specific case chosen for study is a planar
turbulent jet of pure carbon monoxide gas at room
temperature exhausting into stagnant air, with
the reaction taken to proceed by a direct one-step
irreversible mechanism to form the product gas
carbon dioxide. Accordmg!y. parametric values
are assigned as follows =0,638, Y

156, ¥, =0, T, = 1, @ -684 and ¥ = 3F43s,
I'he parameter is to be set equal to either #
or I; while, ¥B is to be set equal to 0, 0.1, or

l, for purposes of comparison. Finally, in the
expression for mean reactant consumption, the
exponent on the fuel mass fraction m is to be
set equal to either 1 or 2, for parametric study;
while, the exponent on the oxidant mass fraction
n is to be set equal to 1. Clearly, the vari-
ability in assignment of values for 0, ¥B, and
m reflects uncertainty concerning appropriate
values of these parameters.

Some results may be noted prior to the compu-

tations. First, for a pure fuel jel(:) exhausting into
mvxtnatﬁ(& air, the flame length §; =~ Tl +(128Yy)/
lm}_V . For hydrogen, Vo= Yy =2,

= as whnle. for carbon monoxide, = Vg =1,

v =2, m_ = 18, Thus, the flame length for
hydrogen is appreciably longer than that for carbon
monoxide, although quantitative comparison is
limited by the fact that the approximation of com-
parable molecular weights for all species has been
adopted. In any case, it may be premature to
ascribe difficulties in predicting turbulent jet
diffusion flame lengths to the neglected role of
molecular diffusion (Spalding ), as opposed to
inadequate modeling of large-scale mixing. Also,
since § = x/x; = (4T,/3)(x/Y), it becomes evident
that the empirical decrease in ¥ implies, within
the context of the present model, a decrease in
the axial decay of the velocity and of a passive
scalar (cf. (3Zb) and (41), res ecttvell). Further,
since €= DTZ = (3/16) (4T,/3)2 (x/¥3) , the
empirical decrease in Y, Lut eventual increase
in T owing to chemical exothermicity, implies,
within the context of the present model, that the
turbulent diffusion coefficient for reacting flows is
modestly smaller than for frozen flow at small
downstream distances, but appreciably larger for
large downstream distances. Thus, the present
model, for empirically assigned ¥, can recover
several known trends in the data.

Consideration of the frozen chemistry case,
with B = 0, permits comparison of the numerical,

*It is reculled that Yo =(mY )/(m
YF-(mY )/(m 2 ). where m m v
vaF' and Y'l' is the mass fraction of
species i.
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iterative, and Oseen-linearized solutions with the
known exact solutions, for error analysis. For
B = 0, the mass fractions for fuel and oxidant,
individually, are passive scalars, with constant
flux integrals (cf. (35)). For B - 0, it is ex-
pected that '\'l£| f\'zlﬁi, for €21, where
®
C 2
Nltg) = \ (1<=tanh” N)" X(§,m dn:
gt
- . ;
N_(E) =& (1 -tanh M+ X(1,n)dn. 89)
2 y
0
The accuracy of the numerical integration is
characteri7ed by the results that, for o b ak
€ =15, = 0,2696, N 0.2678; while, at
= 140, 1\‘1 _ 0.08886, N_ - 0.08764. The axial
values for thc fuel mass fraction, X(§,0) 3\'("5),
found by the iteration scheme are uniformly less

than 1% different from (smaller than) those found
by the numerical mte;_ratxon for 1s£s 140,
The values for X°(£) found by the Oseun linear-
ization method range between 47
those found by the numerical integration, again,
for 1§ < 140. For O = #, the flux integrals
incur about the same percentage discrepancy as
for 0 = 1; however, the axial values found by
iteration are uniformly less than 1% too low, while
the Oseen-linearization values are up to 207 too
high, relative to X&) obtained numerically, for
1s€<140. (Clearly, adjusting the Oseen constant
a does not avail for B =0, and, in fact, intro-
duction of a second Oseen constant with respect to
analytically motivated modifications of the flow
field might have been undertaken for purposes of
better recovery of the fuel mass fraction field in
the frozen case; however, this procedure was not
adopted. )

and [17 below

Results for the nominal case, i.e,, ¥YB = 1,

m=1,n=1,0=%, are plotted in Figs. 2-11,
For N =0, the monotonic decrease of Y . (and
PU%), and the monotonic increase of Y _, with

increasing £, are depicted in Fig. 2. The mono-
tonic decrease of Y ., and the monotonic increase
of Y., with increasing 7, at any fixed § 2 1,
are depicted in Fig. 3. The maximum temperature
occurs off the axis for & < 6? = 11.82 (the flame
tip distance), but, then, goes to the axis for larger
€. As seen in Fig. 4, the magnitude of the maxi-
mum temperature increases with increasing § for

E< ﬁo though most of the increase occurs at rela-
hvely small £; then, this magnitude decreases for
£> £f These results are amplified in Fig. 5,

where it is ohown that, at given £, the y-position
of the locus Y . =X, increases, then, de-
creases, with Pncreaamg €, but, nevertheless,
always exceeds the y-position of the maximum
temperature. All these results are compatible in
trend with experimental data, discussed earlier,
and are of plausible magnitude, when allowance is
made for the planar geometry, Whercas Figs. 2-5
involve the numerical solutions only, Figs. 6-10




indicate the adequacy of the approximate methods
of solution. (Here, for O #, the Oseen-linear-
ization constant a is set equal to 0.38, as opposed
to the 0.28 value suggested earlier after numerical
experimentation.) 11 reveals that, in the
conservation equation for fuel, turbulent diffusion
and tangential (streamwise) convection balance
near the axis, but normal convection and chemical
reaction (consumption) play a significant role off
the axis; at large distances from the axis, diffusion
and normal convection dominate. It seems worth
noting that plausible profiles are generated by a
model that uniformly permits no consumption on
the axis.

Fig.

In Table 1, numerical results for the nominal
case are compared with numerical results obtained
from the model by sequentially altering one param-
eter at a time. Increasing the turbulent Schmidt
number increases the axial values of the fuel mass
fraction and the distance off axis of the flame.
Increasing the fuel or oxidant exponent in the con-
sumption term decreases the amount of fuel con-
sumption; while, increasing the effective turbulent
Damkohler number YB increases the amount of
fuel consumption. (By numerical experimentation
for the case of YB =0 =m =n =1, in the Oseen-
linearization model, a = 0.62, as opposed to
a = 0.48, mentioned above, gives closest agree-
ment with the results from the finite-difference
integration; in fact, the axial fuel mass fraction is
missed, i.e., over estimated, by less than 1%,
15§ 30.)

for

In conclusion, the authors feel that, in the pres-
ent paper, the following have been demonstrated:

(1) the postulated model captures the essential
physics (i.e., the experimental results) for the
turbulent portion of the planar fuel jet; and (2) the

given approximate solutions
the model.
parametric cases may be made using the approxi-

capture the essence of
It is suggested that studies of other
mate solutions, rather than the numer

al solutions.,

References

1

Kerber, R. .., Emanuel, G. and Whittier,
J. S., '"Computer Modeling and Parametric Study
of a Pulsed H, + F, Laser, ' Appl. Optics, Vol, 11,

2
PP. lllZ-llZf.

P, O. A, Ls and Yule,
'"Coherent Structures in Turbulence, '
Mech., Vol. 69, 1975, pp. 513-537,

2 ;
Davies, R T

I Fluid

3

Roshko, A., 'Structure of Turbulent Shear
Flows: A New Look, ""AIAA J., Vol. 14, 197¢,
pp. 1349-1357.

4Bush, W. B. and Fendell, F. E., '"Diffusion-
flame Structure for a Two-step Chain Reaction, "
J. Fluid Mech., Vol. 68, 1974, pp. 701-724,

Carrier, G. F., Fendell, F. E. and
Marble, F. E., ""The Effect of Strain Rate on
Diffusion Flames, '' SIAM J. Appl. Math., Vol. 28,
1975, pp. 463-500.

Carrier, G. F. and Fendell, F. E., "The
Effect of Strain Rate on Diffusion Flames. II.
Large Straining, '' SIAM J. Appl. Math., Vol. 30,
1976, pp. 515-527.

Table 1. Calculated Results
g =3 £-8 g,g‘f’ 11.821

o T o - b o
Case X I X n X I X n X =X I
(¥B, 0, m, a) F f f F f f f F
Nominal 0.787 0.461 0. 346 1.31 0.388 0.224 0.298 0.645 0,288 0.165
% LY
o =1 0,798 0.458 0.339 0.876 0.399 0.224 0. 305 0.449 0.298 0. 166
(1, 1, 1, 1)
m=2 0.803 0.495 0,381 1.31 0.439 0.275 0.353 0. 645 0. 348 0.218
(1, 8,2, 1)
¥YB =1.8 0. 740 0.414 0.302 1.31 0.332 0.180 0.246 0. 645 0.234 0.125
(1.8, 8,1, 1)
n=2 0.862 0.529 0.406 1,31 0.478 0.289 0.380 0. 645 0.373 0.225
(1, %, 1, 2)
Notes: o &
(n YF(£.0:...) =X (5 +¢0) is denoted above by X ().
(2) TL(€:0) = 1.(£:0)/1.(1;0) = 1.(£;0)/1,,(0) is denoted above by 1 _(£); I_.(#) = 2.44, 1. (1) - 1.56.

(3) X(¢, n‘; — x‘(E;...) is denoted above by Xf(ﬁ). with nt(€:0) denoted by ﬂr(e).

17




'Bulh. wW. B. and Fendell, F. E., '"On
Diffusion Flames in Turbulent Shear Flows,
Acta Astro., Vol., 1, 1974, pp. 645-666.

"

Sl’kush. W. B. and Fendell, F. E., '"On
Diffusion Flames in Turbulent Shear Flows:
IThe Two-step Symmetrical Chain Reaction,
Combustion Sci. and Tech., Vol., 11, 1975,
pp. 35-48,

QBush, W. B., Feldman, P, S. and Fendell,
F. E., '""On Diffusion Flames in Turbulent Shear
Flows: Modeling Reactant Consumption in a Mixing
Layer, '' Combustion Sci. and Tech., Vol. 13,
1976, pp. 27-54.

‘OSpalding. D. B., ''Mixing and Chemical
Reaction in Steady Confined 1 urbulent Flames, "
Thirteenth Symposium (International) on Com-
bustion, Combustion Institute, Pittsburgh, Penn.,
1971, pp. 649-657.

11
Spalding, D. B., 'Concentration Fluctuations
in a Round Turbulent Free Jet, "' Chem. Eng. Sci.,
Vol. 26, pp. 95-107,

ZO<:»ma, G. and Wicks, M., 'Concentration
Fluctuations in a Turbulent Jet, "' Appl. Sci. Res.,
Vol. 30, 1975, pp. 381-399.

”Spalding. D. B., '"Mathematical Models of

Turbulent Flames: A Review, '' Combustion Sci.
and Tech., Vol. 13, 1976, pp. 3-25.

4Rcﬂ:yncldo. W. C., 'Computation of Turbulent
Flows, ' Annual Review of Fluid Mechanics, Vol. 8
(Eds. M. van Dyke, W. G. Vincenti, and J. V.
Wehausen), Annual Reviews, Stanford, Calif.,
1976, pp. 183-208.

15Hawthox-ne. W. R., Weddell, D. S. and
Hottel, H. C., '""Mixing and Combustion in
Turbulent Gas Jets, ' Third Symposium on Com-
bustion, Flame and Explosion Phenomena,
Williams and Wilkins, Baltimore, Maryland,
1949, pp. 266-288.

16

Kremer, H., ''Stromung und Mischung in frei
brennenden Diffusionsflammen, '' VDI-Berichte

Nr. 95, VDI-Verlag, Dusseldorf, Germany, 1966,
pp. 55-69.

l7Kent, J. H. and Bilger, R. W., '"Turbulent

Diffusion Flames, ' Fourteenth Symposium (Inter-

national) on Combustion, Combustion Institute,
Pittsburgh, Penn., 1973, pp. 615-625.

wBﬂger. R. W. and Beck, R. E., '"Further
Experiments on Turbulent Jet Diffusion Flames, "
Fifteenth Symposium (International) on Com-
bustion, Combustion Institute, Pittsburgh, Penn.,
1975, pp. 541-552.

1qulliams, F. A., 'Comments on the Theories
and Suggestions for the Experimentalists, "Com-
bustion Sci. and Tech., Vol. 13, 1976, pp. 251~
253,

ZO(]rohs, G. L., 'Chemical Laser Cavity
Mixing and Turbulence, " AIAA Paper 76-56, ATAA,
New York, N. Y., 1976, 12pp.

21 ; N L

Beer, J. M. and Chigier, N. A., Com=~
bustion Aerodynamics, John Wiley, New York,
N. Y., 1972,

22 . . ;

Davies, J. T., Turbulence Phenomena,

Academic Press, New York, N. Y., 1972

3Leasen, M. and Paillet, F., "Marginal

Instability of Turbulent Shearing lLayers and the

Break Point of a Jet, "' Phys. Fluids, Vol. 19,
1976, pp. 943-944.
24 b . ! .y :
Wohl, K. and Shipman, C. W., "Diffusion

Flames, " Combustion Processes (High Speed
Aerodynamics and Jet Propulsion, Vol. 2) (Eds.
B. Lewis, R, N. Pease, and H. S. laylor),
Princeton University Press, Princeton, N. J.,
1956, pp. 365-404.

stamanini, F., '"Numerical Model for the
Prediction of Buoyancy Controlled, Turbulent Dif-
fusion Flames (A Description of the FUELJET2
Computer Program), ' Factory Mutual Research,
Basic Research Dept. Tech. Rept. 22360-1,
Norwood, Mass., 1975, 93pp. and apps.

26 ) .

Gutmark, E. and Wygnanski, I., 'The Planar

Turbulent Jet, "' J. Fluid Mech., Vol. 73, 1976,
pp. 465-495.

7Kotso:winos, N. E., "A Note on the Spreading
Rate and Virtual Origin of a Plane Turbulent Jet, "
J. Fluid Mech., Vol. 77, 1976, pp. 305-311.

2BBatt. R. G., "Experimental [nvestigation of
the Effect of Shear Flow Turbulence on a Chemical
Reaction, "' TRW Systems, Engineering Sciences
Lab. Rept., Redondo Beach, Calif., 1974, 101 pp.

29 S '

Schlichting, H., Boundary-Layer Theory

(6th Ed.), McGraw-Hill, New York, N. Y., 1968,
pp. 696-698.

3oReynoldl, A, J., "The Variation of Turbulent
Prandtl and Schmidt Numbers in Wakes and Jets, "
Int. J. Heat and Mass Transf., Vol. 19, 1976,
pp. 757-764,

3ILewi-. J. A. and Carrier, G. F., "Some
Remarks on the Flat Plate Boundary Layer, "
Quart. Appl. Math., Vol. 7, 1949, pp. 228-234,

3ZCarrler. G. F., "Analytic Approximation

Techniques in Applied Mathematics, "' J. Soc.
Indust. Appl. Math., Vol, 13, 1965, pp. 68-95,

18




33
Fox, L., "Parabolic Equations in Two
Dimensions: I, ' Numerical Solution of Ordinary
and Partial Differential Equations (Ed. L.. Fox),

1962, pp. 242-

Pergamon Press, Oxford, Eng.,
254,
34 ¥y - 4
Kremer, H., '"Mixing in a Plane Free-Turbu-
lent-Jet Diffusion Flame, " Eleventh “ymposium
n Institute,

(International) on Combustion, ol
Pittsburgh, Penn., 1967, pp. 797-800.

ust

3[;Eickhof!’. H. E., "Experimerntal Investigation
of the Influence of Combustion on Turbulent Trans-
port in Jet Diffusion Flames, ' Combustion Insti-
tute European Symposium (Ed. F. Weinberg),
Academic Press, New York, N. Y., 1973, pp. 513-
517

36Bangerl, L. H. and Roach, R. L., "Study of
Effects of Injector Geometry on Fuel-Air Mixing
and Combustion, ' Georgia Inst. of Tech., School
of Aerospace Eng'ng. Prog. Rept., Atlanta, Ga.,
1976, 48 pp.

3-,Chigier. N. A. and Strokin, V., '"Mixing
Processes in a Free Turbulent Diffusion Flame, "
Combustion Sci. and Tech., Vol. 9, 1974, pp. 111-
118.

38Loclwvood, F. C. and Odidi, A. O. O.,

""Measurement of Mean and Fluctuating Tempera-
ture and of lon Concentration in Round Free-Jet
Turbulent Diffusion and Premixed Flames, "
Fifteenth Symposium (International) on Combustion,
Combustion Institute, Pittsburgh, Penn., 1975,

pp. 561-571,

39Guenther, R. and Simon, H., '"Turbulence
Intensity, Spectral Density Functions, and
Eulerian Scales of Emission in Turbulent Dif-
fusion Flames, "' Twelfth Symposium (International)
on Combustion, Combustion Institute, Pittsburgh,
Penn., 1969, pp. 1069-1079.

4O'I'akeno. T. and Kotani, Y., ''A Study of the
Structure of Turbulent Jet Diffusion Flames, '
Combustion Sci. and Tech,, Vol. 10, 1975,
pp. 45-57.

“Zimont, V. L. and Meshcheryakov, E, A.,
"Integral-Method Calculation of Turbulent Diffusion
Combustion of a Jet in an Oxidant Volume and of
a Jet with Primary Oxidant Entrainment with
Concentration Fluctuations Taken into Account, "
Combustion, Explosion, and Shock Waves, Vol. 10,
1975, pp. 190-197.

4zBrz.ultow.ki, T. A., "A New Criterion for
the Length of a Gaseous Diffusion Flame, ' Com-
bustion Sci. and Tech,, Vol. 6, 1973, pp. 313-
319.

19

43

Lavoie, G. A. and Schlader, A, F., "A
Scaling Study of NO Formation in Turbulent Dif-
fusion Flames of Hydrogen Burning in Air,
Combustion Sci. and Tech.,, Vol. 8, 1974, pp. 21
224.

44VUIIB, L.. A. and Yarin, L. P., 'Calculated
Structure of a Diffusion Flame, ' Combustion,
Explosion, and Shock Waves, Vol. 10, 1975,
pp. 131-139.




APPROXIMATE JET "EDGE" (U<< 1) 9

MERGE POINT \ N
¥ (BREAK POINT) P
§o L
;" i 3 }\— >(§.fmnnnv
NOZZLE e
i __/’\/ FLAME TiP (£ ("'1
cant UAYER i
FLAME (Y = Yg)
Fig. 1. Schematic diagram, not to
scale, of a lifted subsonic
planar turbulent fuel jet
exhausting into a stagnant
oxidant-containing ambient, e NEET R N
with the flame locus defined s T Rk T
by the condition of equal
values for the (stoichiometri-
cally adjusted) mass fraction
for fuel, Y., and for oxidant,
YO' At the axis of symmetry Fig. 3. For the nominal case, the
(B ; static temperature T(:, ) is
y =n =05 x, £ are streamwise jven as a function of the
coordinates. ?density—sca]ed) transverse
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Fig. 2. For the nominal case (Y0 = Sl
0.638, Y. =1.56, Y; =0, = 032
J i 024
Tj =1, Q=64.4, y = 3.835, e
BY=1’030-5.m=n=])’
the following quantities are i

plotted against the stream-
wise similarity coordinate
£, from the break point

£ =1: the axial fuel mass
fraction, YF(a,O); the axial

oxidant mass fract1on,Y0(c,0);
the integral of YF(c.n) over
the transverse similarity
coordinate n, IF(g); and the

axial dynamic pressure, p(£,0)-
u2(¢,0).
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Fig. 4.

10

For the nominal case, the fuel
mass fraction YF (solid curves)

and the oxidant mass fraction
Yo (dashed curves) are given as

a function of the transverse
similarity coordinate n, at

several values of the stream-
wise similarity coordinate ¢.
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For the nominal case, the
following quantities are given
as a function of the streamwise
similarity coordinate &, for

£ 5 1 (where £ = 1 is the break
point): the value of Y0(= YF)

at the flame locus for & < 11.82
(where & = 11.82 is the flame
tip position), this curve giving
the axial value of the oxidant
mass fraction YO(E.O) for

£ > 11.82; the value of n at

which Y0 = YF for given £; the
equivalent value of y at which
Yo = YF for given £; the maxi-

mum value of the static tem-
perature T at any n for given
E s TMAX; the value of n at

which TMAX occurs for given ¢;

and the equivalent value of y
at which TMAx occurs for given g.
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For the nominal case, a compari-
son of the fuel mass fraction
profiles YF over transverse sim-

ilarity coordinate n, for ¢ = 1
(the break point), as obtained
by numerical integration, by
iteration, and by Oseen lin-
earization (a = 0.38).
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Analogous plot to Fig. 6, for
£ = 3.0,




040 ¢
03%
£ 800
030+ NUMERICAL
ITERATION

l x LINEARIZAYIONJ‘

2+ 020 |
0 151}
010
005
0.00 S U
0 1 2 3 4 5 6 7 8 9 10
n
Fig. 8. Analogous plot to Fig. 6, for
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Fig. 9. Analogous plot to Fig. 6, for
£ = 11.82 (the flame tip

position).
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Analogous plot to Fig. 6, for
£ = 15.0,
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For the nominal case, at the
distance downstream of the
flame tip ¢ = 11.82, the values
of the terms comprising the
model mean equation of conser-
vation of the fuel species
[tangential (streamwise) con-
vection, transverse convection,
turbulent diffusion, and con-
sumption (chemical reaction)]
are given as a function of the
transverse similarity
coordinate n.




